
training@instil.co

September 2018

© Instil Software 2018

Down With JavaScript!

Develop	

Consult	

Train	

Where Things Were Better…

Did	you	know	that	the	original	
4GL’s	were	designed	to	be		an	
ideal	coding	environment	for	
GUI’s?	Where	no	one	would	
suffer,	and	everyone	could	
leave	the	office	at	5pm?	

Happiness is Visual Basic 6

True Happiness is Delphi

Imagine a Developer Was Frozen in the 1990’s

What Would They Expect?

What Do We Have Instead?

The Myth Of The Full Stack Developer…

But Salvation Is At Hand!!!

But Salvation Is At Hand!!!

React 101

<Ticker	name=“Fred”/>	

class	Ticker	extends	React.Component	{	
				constructor(props)	{	
								super(props);	
								this.state	=	{secondsElapsed:	0};	
				}	
				componentDidMount()	{	
								this.interval	=	setInterval(()	=>	this.tick(),	1000);		
				}	
				componentWillUnmount()	{	
								clearInterval(this.interval);		
				}	
				tick()	{	
								this.setState({secondsElapsed:	this.state.secondsElapsed	+	1});	
				}	
				render()	{	
								return	(
												<div>	
																<h1>Hello,	{this.props.name}!</h1>	
																<p>Page	open	{this.state.secondsElapsed}	seconds.</p>	
												</div>	
);	
				}	
}

class	Ticker	extends	React.Component	{	
				constructor(props)	{	
								super(props);	
								this.state	=	{secondsElapsed:	0};	
				}	
				componentDidMount()	{	
								this.interval	=	setInterval(()	=>	this.tick(),	1000);		
				}	
				componentWillUnmount()	{	
								clearInterval(this.interval);		
				}	
	
				tick()	{	
								this.setState({secondsElapsed:	this.state.secondsElapsed	+	1});	
				}	
				render()	{	
								return	(
												<div>	
																<h1>Hello,	{this.props.name}!</h1>	
																<p>Page	open	{this.state.secondsElapsed}	seconds.</p>	
												</div>	
);	
				}	
}

Initial	State	

Lifecycle	
Methods	

Changing	state	marks	component	as	dirty	

Rendering	uses	embedded	JSX	templating	language	

We Still Need Services and a Data Source

Having	defined	the	problem,	the	first	step	
towards	a	solution	is	the	acquisition	of	data.	

The Neo4J Desktop

The Neo4J REST API

The Neo4J REST API

© Instil Software 2018

•  Using Kotlin.js

Demo No1

Kotlin.js Support in IntelliJ

Kotlin.js React Support

Kotlin Wrappers Repo

Kotlin Conf Presentation

The Demo…

Summing Up

Scala js with
Slinky

Flames

Flames

➔ Scala code compiled to JS

➔ Full Scala support (apart from reflection)

➔ Fast dev feedback loop

➔ Compact production JS code generated

➔ Performance within 1-3x as optimised JS

➔ Type safety across multiple platforms

What is Scala JS

Scala for JS
Devs

 Ref: scala-js.org

JS Comparison: Variables

// mutable variable
let x = 5;
// immutable variable
const y = "Constant";

// mutable variable
var x = 5
// immutable variable
val y = "Constant"

Prefer
Immutability

JS Comparison: Functions

function mult(x, y) {
 return x * y;
}

def mult(x: Double,

y: Double): Double = x * y

JS Comparison: Anonymous functions

const f = (x, y) => x + y;

const p = ["Fox", "jumped",
"over", "me"];

const l = p.map(s => s.length)
 .reduce((a, b) => a + b, 0);
// == 15

val f = (x: Double,

y: Double) => x + y

val p = Array("Fox", "jumped",
"over", "me")

val l = p.map(s => s.length)
 .foldLeft(0)((a,b) => a + b)
// == 15

JS Comparison: Higher order functions

function minmaxBy(arr, f) {
 return arr.reduce(
 ([min, max], e) => {
 const v = f(e);
 return [Math.min(min, v),
Math.max(max, v)]
 },
 [Number.MAX_VALUE,Number.MIN_VALUE]
)
}
const [youngest, oldest] =
minmaxBy(persons, e => e.age);

def minmaxBy[T](seq: Seq[T],
f: T => Int): (Int, Int) = {

 seq.foldLeft((Int.MaxValue,
Int.MinValue)) {
 case ((min, max), e) =>
 val v = f(e)
 (math.min(min, v),

math.max(max, v))
 }
}
val (youngest, oldest) =
minmaxBy[Person](persons, _.age)

JS Comparison: Futures

function onLoadPromise(img) {
 if (img.complete) {
 return Promise.resolve(img.src);
 } else {
 const p = new Promise((success)=> {
 img.onload = (e) => {
 success(img.src);
 };
 });
return p;
 }
}

def onLoadFuture(img:
HTMLImageElement) = {
 if (img.complete) {
 Future.successful(img.src)
 } else {
 val p = Promise[String]()
 img.onload = { (e: Event) =>
 p.success(img.src)
 }
 p.future
 }
}

Other features

● Traits (Mixins)
● Singleton Objects
● Immutable Collections
● Case Classes
● Tuples
● Pattern Matching / destructuring
● Default parameter values
● Lazy Initialization
● Reified Generics
● TypeClass Support
● Higher Kinded Types Support
● Macros

 …….

JavaScript Interop : Facades

@js.native
trait Window extends js.Object {
 val document: HTMLDocument = js.native
 var location: String = js.native

 def innerWidth: Int = js.native
 def innerHeight: Int = js.native
 …
} Typescript definitions to Scala.js Binding transformer available

https://github.com/sjrd/scala-js-ts-importer

https://github.com/sjrd/scala-js-ts-importer

JavaScript Interop : Exposing Scala.js

package example
import scala.scalajs.js.annotation._
@JSExportTopLevel("HelloWorld")
object HelloWorld {
 @JSExport
 def sayHello(): Unit = {
 println("Hello world!")
 }
}
HelloWorld.sayHello();

Also @JSExportTopLevel("..")
to export a class

Slinky

➔ Scala JS wrapper for React

➔ Stays close as possible to React

conventions

➔ Excellent integration with existing react

components

React Stateless Component

React Stateless Component expanded

Slinky: getting started

● Dependent on Java 8, SBT, NPM

Demo

Diode
● Immutable application state
● Controlled data flow
● Similar to react
● React components integration

ScalaCSS: Typesafe CSS DSL

Slinky React Native

● Dependent on SBT and Java 8, NPM, xcode

training@instil.co

September 2018

© Instil Software 2018

F# and Fable
Functional Client Side Development

Eamonn.Boyle@instil.co

@BoyleEamonn

F# and Fable
Functional Client Side Development

.NET strongly & statically typed multi-paradigm language
• Imperative
• Object Oriented
• Functional First

Open source, cross platform
• Mono, .NET Framework & .NET Core

Stable – currently on version 4.5 (August 2018)
• Version 1.0 released in 2005
• Passionate Community

A lot of nice C# features originated in F#

F#

Originally a .NET implementation of OCaml so the syntax is similar

Heavy use of type inference
• Expressions, function parameters and return types etc all inferred from usage
• Can reduce the amount of typing (pun intended)
• Can lead to very strange error messages

Focuses on pushing runtime errors to compile time
• Very strict type system

Easy interop with .NET (C#) libraries

F# Syntax

Type bindings and helpers for easy interop with JavaScript
• Including Type Safe helpers for React

Supports most of the F# core library

There’s a tool to convert TypeScript bindings to Fable bindings
• https://github.com/fable-compiler/ts2fable

Fable

Fable is an F# to JavaScript compiler powered by
Babel, designed to produce readable and standard

code.

Elm-like abstractions for F#

Facilitates creating Model-View-Update applications
• Similar to using Redux with something like React
• Does not include the View part, instead you use the Fable React helpers

The main building blocks are
• Model
• Messages
• Commands
• Initialisation
• Update
• Views
• Program

Elmish

© Instil Software 2018

Demo

© Instil Software 2018

The Bad Stuff

“This was the hardest development
experience, period!!”

Type inference can be very confusing
• I enjoy type inference in C#, Kotlin etc
• This is at another level
• Inference in one part of the program can be dictated by usage far away
• This can lead to confusing error messages
• Explicit types can help here
• But then the syntax can be longer than other languages

File order matters – this caught me out a few times

Tooling is not perfect
• I found myself moving between VS Code and JetBrains Rider

Runtime errors can still occur and can be difficult to debug
• Some of the error messages are minimal

The Bad Stuff (very subjective)

I found the React bindings a pain compared to using HTML
• It’s better because it’s type safe but…
• Tooling around HTML + CSS is pretty mature while this isn’t
• More difficult if working with other tools, designers and existing skills
• I find standard JSX with React much easier

White space significance is a pain

I found it difficult to structure the app
• Some blocks of code were getting very large
• I would need to build much larger apps to see how this scales

The Bad Stuff (very subjective)

© Instil Software 2018

The Good Stuff

The language is pretty cool - succinct functional syntax
• Pipes
• Function Composition
• Type Definition and Domain Modeling
• Operator Overloading
• etc

Strict Type System
• Catches a lot of errors
• Exhaustive pattern matching
• Units of measure
• Etc

Easy interop and drop down to OO or imperative style if required

The Good Stuff

This ability to use OO & imperative is essential when targeting JavaScript platform
• Good bindings to access dynamic types

Tooling is very good
• Very quick to create a project from templates
• Visual Studio Code + Ionide is pretty good and is completely free
• HTML to Elmish converter - https://mangelmaxime.github.io/html-to-elmish/
• Hot Module Reloading while retaining state

Elmish MVU pattern is very good and is well implemented
• Very succinct to build up types, state and views

The Good Stuff

© Instil Software 2018

Conclusion

It is very impressive what these projects have accomplished

Some aspects of the development are succinct, safe and neat

If you are a functional fan & especially if doing F#, then this is pretty awesome

My Conclusion

But…

For my money, TypeScript is a better solution

Better balance (compromise) on safety, succinctness & productivity
• Gives me type safety (even if less expressive)
• Much easier interop with JavaScript (it’s a superset)
• Easier consumption of existing JavaScript libraries
• Better tooling

I would stick with standard HTML/JSX for my view definitions
• Not because it is necessarily better for defining views
• Simply because the tooling, documentation and onboarding is easier

Angular has excellent TypeScript APIs

My Conclusion

